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ntroduction

“In August of 1904 Ludwig Prandtl,a 29-year old professor presented a
remarkable paper on BOUNDARY LAYER at the 31 International
Mathematical Congress in Heidelberg.

< The condition of zero fluid velocity at the solid surface is referred to as
‘no slip’ and the layer of fluid between the surface and the free stream
fluid is termed BOUNDARY LAYER.



! Boundary Layer History

%1904 Prandtl
Fluid Motion with Very Small Friction
2-D boundary layer equations

%1908 Blasius
The Boundary Layers in Fluids with Little Friction
Solution for laminar, O-pressure gradient flow

%1921 von Karman
Integral form of boundary layer equations
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| aminar Flow

% Each liquid particle has a definite path.

% The paths of individual particles do not
cross each other.

% All the molecules in the fluid move In
the same direction and at the same speed.

%+ |t also called as stream line flow.



Turbulent Flow

 Each liquid particle do not have a
definite path.

 The path of individual particle also cross
each other.

»* The molecules in the fluid move In
different directions and at different
speeds.
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Critical Velocity

“ A velocity at which the flow changes from the laminar flow to
turbulent flow.

 The critical velocity may be further classified into the following two
types :1.Lower Critical Velocity

2.Upper Critical \elocity
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Reynold’s Number

Re =lInertia forces/viscus forces
=(pv"2)/(uv/d)
=pvd/u
=vd/V (as p/u=V)
Re=Mean velocity of liquid x Diameter of pipe
Kinematic velocity of liquid
% Re <2000 ; Laminar flow
% 2000 < Re <2800 ;Transition flow
% 2800 < Re ; Turbulent flow
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Boundary Layer Theory

<+ A thin layer of fluid acts in such away ,as if it’s inner
surface is fixed to the boundary of thebody.

<+ Velocity of flow at boundary layer iszero.

“+ The velocity of flow will go on increasing rapidly till at the
extreme layer.

<+ The portion which is outside the boundary layer has a high
value of Reynold’s Number, because of the high velocity of
flow
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Fig.13.2 Flow over a plate.
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Hence for laminar boundary layer, we have 5 X 10° =




Thickness Of Boundary Layer
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“ The distance from surface of the body ,to a place where the velocity of
flow is 0.99 times of the maximum velocity of flow ,is known as
thickness of boundary layer.

% It 1s usually denoted by 6(delta).

% Rux= VX/v
where, V=\elocity of fluid
v=Kinematic velocity of fluid
x= Distance b/w the leading edge of the plate and the
section



13.2.3 Laminar Sub-layer. This is the region in the turbulent boundary layer zone, adjacent to
the solid surface of the plate as shown in Fig. 13.2. In this zone, the velocity variation is influenced
only by viscous effects. Though the velocity distribution would be a parabolic curve in the laminar
sub-layer zone, but in view of the very small thickness we can reasonably assume that velocity
variation is linear and so the velocity gradient can be considered constant. Therefore, the shear stress in
the laminar sub-layer would be constant and equal to the boundary shear stress T,. Thus the shear stress
in the sub-layer is
i

du i _ o u
To=H |- =M — .+ For linear variation, Fiinien
y=0 y y ¥



! Boundary Layer Thickness, 5

Free stream

_—

velocity, U

______ Us | Upper limit, boundary layer
T du=099U;
Eddy formations
in boundary layer
6’
-------- Laminar (or viscous)
f sublayer

Boundary layer thickness is defined as that distance from the surface
where the local velocity equals 99% of the free stream velocity.

5 = Y (u=0.99Us)



! Thickness Of Boundary Layer

In A Laminar Flow

<+ It has been experimentally found, that the thickness of the
boundary layer is zero at the leading edge A, and increases
to the trailing edge , the flow is laminar.

s+ According to Pohlhausenin

Om = 5.835x/vVRnx

» According to Prandtl-Blassius

Slam = 5x/VRnx



=~ Thickness Of Boundary Layer
In A TurbulentFlow

“ As the boundary layer continuous further downstream, it
expands and the transition flow changes into turbulent flow and
the transition boundary layer changes into turbulent boundary
layer, which continuous over the remaining length of the plate.

+ According to Prandtl-Blassious,
otur = 0.377X/(RNX)"1/5
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Displacement Thickness, 6*

The displacement thickness for the boundary layer is defined as the
distance the surface would have to move in the y-direction to reduce the
flow passing by a volume equivalent to the real effect of the boundary

layer. == 08 (1 —u/Us)dy



_\““:%_

Momentum Thickness, 0

Momentum thickness is the distance that, when multiplied by the
square of the free stream velocity, equals the integral of the
momentum defect. Alternatively, the total loss of momentum flux
IS equivalent to the removal of momentum through a distance 6. It
IS a theoretical length scale to quantify the effects of fluid
viscosity near a physical boundary.

0= 05 u/Us(1 —u/Us)dy




Problem 13.1 Find the displacement thickness, the momentum thickness and energy thickness for

the velocity distribution in the boundary layer given by % = l, where u is the velocity at a distance y

&
from the plate and u = U at y = 8, where & = boundary layer thickness. Also calculate the value of 5*%/.
Solution. Given :

Velocity distribution % =Y

d
(i) Displacement thickness &% is given by equation (13.2),

L

5 16
=|i:,;_}'—} {6 is constant across a section }
20 1y
=0- a—.=ﬁ—i=§. Ans.
20 2 2

(i) Momentum thickness, 8 is given by equation (13.5),

&
0= 1(1—1)dy
o U U



Substituting the value of —=

=

5 oo
i_i _ﬁ_‘_53 _E 0 306-20

25 3% 286 3%° 2 3 6
(iif) Energy thickness 8** is given by equation (13.6), as

B wl, B _ Y, ¥y
5 = | U{l Uz]dy ) 3{1 az}d}:

=§_E=M=E‘ A“S
2 4 4 4
fﬁj
: 6% 2) 0 6
(iv) 8 =:§J_EKE=3 Ans
L6




Problem 13.2 Find the displacement thickness, the momentum thickness and energy thickness for

2
the velocity distribution in the boundary layer given by 5 =2 [%J — (%) :

Solution. Given :

T

Velocity distribution % _ s (%) ) g]

(1) Displacement thickness 8* is given by equation (13.2),
5* = J'E [1 - i} d
= . U y

u ¥y (»Y
Substituting the value of E = 2(—] - E) , we have
\

=L h-[(3)- G o




(if) Momentum thickness 8, is given by equation (13.5),

& u i &
E|'= —]-— d‘:
GU{ U}} -L[

_J‘E _Ey_ﬁfﬁf_f}d _[2}'2_5J-'3+4J*4_ y ]ﬁ
o8 8 8 o) |25 35 48° 58°
5 58° & af'] 58 &
i _0 _s-20,5-20
[a 3&”53 58° 3+ 5
_158-255+155 35 _ 305285 _ 23
- 15 15 15

0

Ans.



(#if) Energy thickness 8** is given by equation (13.6),

54k = K

-

|
\
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4y
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» 13.3 DRAG FORCE ON A FLAT PLATE DUE TO BOUNDARY LAYER

Consider the flow of a fluid having free-stream velocity equal to U, over a thin plate as shown in
Fig. 13.4. The drag force on the plate can be determined if the velocity profile near the plate is
known. Consider a small length Ax of the plate at a distance of x from the leading edge as shown in
Fig. 13.4 (a). The enlarged view of the small length of the plate is shown in Fig. 13.4 (b).

OUTER EDGE OF
BOUNDARY LAYER
BOUNDARY LAYER f

Fig. 13.4 Drag force on a plate due to boundary layer.

The shear stress T, is given by 1, = (?] , where [E] is the velocity distribution near the
Y bl

y=10 dy ), =0
plate at vy = (.
Then drag force or shear force on a small distance Ax is given by
AF = shear stress X area

=Tp X Avx b LA13.7)  {Taking width of plate = &}



where AF p, = drag force on distance Ax
The drag force AF;, must also be equal o the rate of change of momentum over the distance Ax,
Consider the flow over the small distance Ax. Let ABCD is the control volume of the fluid over the

distance Ax as shown in Fig. 13.4 (&) The edge DC represents the outer edge of the boundary layer.
Let u=wvelocity at any point within the boundary laver

b = width of plate

Then mass rate of flow entering through the side AD

Mass rate of flow leaving the side BC

L

=
p  velocity X area of strip of thickness dy
il
. P b o dy [~ Area of strip = b = dy}
o

pubdy

= mass through AD +II_:_|Ii (mass through AD) = Ax

X

& a [ ¢®
= L pubdy E[J‘D Izpubdy}l] ¥ Ar



From continuity equation for a steady incompressible fluid flow, we have
Mass rate of flow entering AD + mass rate of flow entering OO
= mass rate of Mlow leaving BC
Mass rate of flow entering C = mass rate of flow through BC - mass rate of flow through AD

- J‘: puhdy + %[Epubﬂ}'] * Ar - E pubdy

- -}i [I:pubdy] x Ax
X

The fluid is entering through side OC with a uniform velocity U,
Mow let us calculate momentum flux through control volume.
Momentum flux entering through AD

&
= J momentum flux through strip of thickness dy
i

- ijas& through strip = velocity = J.I: (pubdy) ® u = _[: I}Hi'bd}‘

Momentum flux leaving the side BC = rpuibd}- + ﬂi [Epuzﬁd}-] » Ay
o X

Momentum flux entering the side O = mass rate through DO = velocity

9
"

g | ¢
== j'u p:.rU.ba‘}-] x Ax

As L7 i1s constant and so it can be taken inside the differential and integral,

[ o6
J' pubdy] x Ax % IJ (*+ Velocity = U}
(K




"

Rate of change of momentum of the control volume
= Momentum flux through BC — Momentum flux through AD

= J: puzbd}'+

d

T

-9
dx

3 [

ax

- momentum flux through DC

B oy a [ s |
up“ bdy]:-e:m—j-ﬂ e b::'_v—EUﬂpuUbd}] W Ax

_[: pulbdy

d
xﬂx—a[‘[:pnﬂbd}-} = Ax

J? pu’bdy - J:l puﬂbdy] ® Ax

:I: {puEE: - puﬂbjd}'] o Ax

:;}b I: {:-:2 —uLf}.a'y] ® Ax

{ For incompressible fluid p is constant}



d [,z
= pb EU-: [we —!-:U}dy] % Ax (13.8)

Mow the rate of change of momentum on the control volume ABCT must be egual to the total force
on the control volume in the same direction according to the momentum principle. But for a flat plate
dp

== =10, which means there is no external pressure force on the control volume. Also the force on the

dx
side OC is negligible as the velocity is constant and velocity gradient is zero approximately. The only
external force acting on the control volume s the shear force acting on the side AR in the direction
from & to A as shown in Fig. 13.4 (8). The value of this force is given by equation (13.7) as
AF =Ty =% Av = &
Total external force in the direction of rate of change of momaenium
=T, X Axxh A 13.9)

According o momentum principle, the two values given by equations (13.9) and (13.8) should be
the same.

d [¢f,
— T, Ax = b= pb E[J‘n (u' —u{.l']d_‘g.r:| = A

Cancelling Ax = &, 1o both sides, we have

wen [ o]

=p %[f Uj[%— ;1 ]d‘y]:pb’z %[E % [1 -%]d;.-]

T, d J‘ﬁ u |: u:|
=— —|l=—|d L A1310
or L EI'x|: o U T, 'y { )
&
In equation (13.10), the expression J‘” ﬁ[l - 5] dvis equal o momentum thickness 6. Hence
equation (13,10} is also written as
Ty _ 90 LA13.11)
plre dx

Equation (13.11) is known as ¥Yon Karman momentom integral equation for boundary layer
flows.



For a given velocity profile in laminar zone, transition zone or turbulent zone of a boundary layer,

the shear stress T, is obtained from equation (13.10) or (13.11). Then drag force on a small distance Ax
of the plate is obtained from equation (13.7) as

AFp=tT,xAx x b
Then total drag on the plate of length L on one side is

I
Fp= | AFp= [ tyxbxdy {change Av = dx]. L013.12)
{1
13.3.1 Local Co-efficient of Drag [Cp*]. It is defined as the ratio of the shear stress T, to the

1
quantity 5 plL%, It is denoted by Cp*

Hence Cp¥= To A13013)

1 3
L
Ep

13.3.2 Average Co-efficient of Drag [Cp]. It is defined as the ratio of the total drag force to

l 3
the guantity 3 pAL”, It is also called co-efficient of drag and is denoted by C,.

Fp

Hence Cpp= L (13.14)

1
—pAL
3 P
where A = Area of the surface {(or plate)

[F = Free-stream velocity

p = Mass density of fuid.



Problem 13.3 For the velocity profile for laminar boundary layer flows given as
H
o = 200) - (yR)

find an expression for boundary layer thickness (), shear stress (T,) and co-efficient of drag (Cp) in
terms of Reynold number.
Solution. Given :

(i) The velocity distribution % =2 (%J - [%} D)

Substituting this value of % in equation (13.10), we get

s[2y 1, (2 ¥
L_a‘sﬂ][l (5 52]]‘“}

_d S 2y ¥
e [ e

dc b |8 8" & 8 & &
i

a2y S5y* 4y a2y Sxy' 4yt
- —_— e — 4= _|dy=— L —_ £ —

axjﬂ[ﬁ 8 5 o |7 ax| 25 3 48 56,

2[5 58 & & | 9. 5 5
= |t = == 8-S+ 8- =

dx | B 357 5 55“} ax[ TS
_1'158—258+156—36]_1[3[}8—288}_&'@}_31 (5]
Coax | 15 ox 15 & 15] 159«

3

Ty = pU° x zi[5]=31:.LFEM .(13.15)

E dx 15 dx



The shear stress at the boundary in laminar flow is also given by Newton's law of viscosity as

s
0 dy o

B 2
But from equation (i), u=LU E- }’_2
B
du 2 Ey}
==L
dy & 8°
du =U_3-M{“]}=EU
dy) . L8 & | 8
Substituting this value in (ii), we pet
fomux 202
! 5 b

Equating the two values of T, given by equation (13.15) and (i)
2 d 2ul/
5PV o 8= 5

1SuU _ 15u 150
r [ ] = NIRRT or dd[8]= U dx

As the boundary layer Ih]CkﬂESS (&) is a function of x only.
Hence partial derivative can be changed to total derivative

{ .-

(1)

[J is constant}

o EE)



On integration, we get

154

Bd(3) = - dx
2
E—zﬂx-l-{j
plU
x=0,8=0and hence C=10
8 15ux
2 pU
3=J2x15|u=J30w: _ 548 |PX
pU pU pU
=548 M2 _ 548 [
plU xx He‘
= 548 —
R

{iLiSﬁmMmﬂ}
pl/

.(13.16)

[+, 0]
! H

L(13.17)

In equation (13.16), W, p and U are constant and hence it is clear from this equation that thickness
of laminar boundary layer is proportional to the square root of the distance from the leading edge.
Equation (13.17) gives the thickness of laminar boundary layer in terms of Reynolds number.



In equation (13.16), W, p and L/ are constant and hence it is clear from this equation that thickness
of laminar boundary layer is proportional to the square root of the distance from the leading edge.
Equation (13.17) gives the thickness of laminar boundary layer in terms of Reynolds number.

(i) Shear stress (1) in terms of Reynolds number
2ul7
d

Substituting the value of & from equation (13.17), in the above equation, we get

From equation (ifi), we have T, =

__omu__2MUJR, = 0.365 E\/R_
36! .

To = P
543 548x X
,fﬁ't_I
(iif) Co-efficient of Drag (Cp)
FJ‘J

From equation (13.14), we have Cp, =

1 ;
~pAU?
Ep

where F; is given by equation (13.12) as

L L
Fp= L T, % bxdx= .L U.Hﬁﬁ%,fﬁer ¥ b X dx

L
=0365 U IPUX b ax { R, :ﬂ}
o x| u o

L U1
= 0.365 jﬂpU /%xﬁxbxdx




L 112 1k
= 036510 Y « .!:-I 2 dy = 0.365 uU JE X b X {"_]
’,I, a l"" 1

2 Jy
plf
=0.365 x 2ull |[m—— x b x 4L
\Jp

= 0.73 bul/ J':’UL (13.18)
i
0.73 buu [PVE
Cﬂz I"I'

Lo a2
—pAU
5 P

where A = Area of plate = Length of plate x width= L x b
Cp= 0.73 bulU JpUL _ L46 1 |'|}UL
%p xLxbxy>V ®H  PLU Y M

146, _ 146 gy [ [ B 1
qu.t 4 pUL ,':L o pUL JRTL




! Pressure Gradients In

Boundary Layer Flow

Region 1 | Region 2 Region 3
O_p. <0 d @ >0
ox

”
. — —| ==
y e ] == - e
—| =] — t — ,/f e
L __________ 5 () _’ C Backflow
,,,,,, — S— - \ A
==".x / l e e

Separation point: a—"] =0 j
()}' y=0
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Applications Of Boundary Layer Theory

< Aerodynamics (Airplanes, Rockets, Projectiles)

+ Hydrodynamics (Ships, Submarines, Torpedoes)
 Transportation (Automobiles, Trucks, Cycles)
“Wind Engineering (Buildings, Bridges, Water Towers)

% Ocean Engineering (Buoys, breakwaters, Cables).



Velocity Distribution ) Ch

n () _(2Y

— =2(=]-]= 548 v 1.46/

Lot g

o A(yYy 1fyY

o S e s R 4.64 xf 1.292/

U z[a] z[aj .

3 4

. ¥ ¥ ¥

— =2 -2 +| 5 3.84 x/ 1.36/ [ R

o= -

i . Ty

— = ZIn (E E] 4.79 xf 1.31/ RE'L

Elasius’s Selution 4.91 xf 1.328/ R,
L




Problem 13.7 For the velocity profile for laminar boundary flow E = sin [g g

Obtain an expression for boundary layer thickness, shear stress, drag force on one side of the plate
and co-efficient of drag in terms of Reynold number.

. b3
Solution. (i) The velocity profile is % = sin (2 ;]

Substituting this value in equation (13.10), we have

2 _i"ﬁi[_f }zi s (MH; (E iﬂd
pUl-Eu:_-ﬂD’] v)? " o .[;. Y R TR |

AN Ez‘_-z(ﬂj ‘
=3 {sm(la{’ sin 53 }d}}

L}
=

—CDSE E}( 5in1[— l]
_ 9 26| |28 2 5
ax T T n
S Sl 43—
25 25 * 25




]
a0 _[E]_a[zﬁ_z »
T O [ﬂ+£] T | arlm 4 =
L 2w) 25
_E_E_ﬁ]_i[‘*‘“]ﬁ_[‘*‘“)ﬂ
Tox|lm 2| Al 2n L2 ) ax
_(4-m zﬂ
ﬂ}_( 2m ]pU dx
T, 1% also equal = (d_u]
0 o= = ﬁ':l. _"'I' ﬂ‘.}' -
ny
B = [ —_=
ui i sm(l ﬁ]
du)_ LB A
[a}r]_gm[z E)x 28
[.:m] 4 [r: u] Un
— =l —g| ——=|=—
) 28 2 &) 24




u plim
—u | == =" (1331
=M [a}?lﬂ 75 ( )

Equating the two values T, given by equations (13.30) and (13.31)

[4_n]pb’3 E}E:MUE or EHE=MUEK 21 X 12 dx
2n dx 28 2 4d4-m pU

2

695 = — MU o 114975 M ax

 (4-w) pU? pU
: 8’ i
Integrating, we get — =114975 —x+ C
2 oU
Atx=0,6=0and hence C=1(
O 4975 B .
pl/f

§ = szll.at@?ﬁix —4795 |4,
plU pU
= 4,795 H = 4.795 L ® X
V pUx \I[::-Ux

_ 4,795 x

e

. (13.32)



(ii) Shear Stress (T,)

. ubm uim nim R,
From equation (13.31), Ty = = =
4 (133D 728 0 2x4T795x T 24795 x

%
i
T 2% 4795 J_ 0327 _V{_

(iii) Drag force (F) on one side of the plate is given by equation (13.12)

- [ _ (F0307 BU _ L1 [pUx
FH—LTﬂKbKir—IUD,31T - |"Rf1xbxdx—{}.32?u[f:-cbju L
[pU pU [+ ]
=0.327 ul x b x _[ P de=0327 pUx b x [P
m

l
2 1y
oU
=0.327 x2xulU x b J—a-:JE
L
= 0.655 x U/ X b X ’ﬂ (13.33)
i



(iv) Co-efficient of drag, Cy, is given by equation (13.14),

CD=]F—“,whcr¢A=be
— pAL*
2
0655 x ul/ x b x pUL 0T
Epﬂlxbe pUL 3
= 1.31 x luL = l;" (13.34)
P



Problem 13.8 For the velocity profile in laminar boundary layer as,

5-3(5)-3(5)

find the thickness of the boundary layer and the shear stress 1.5 m from the leading edge of a plate. The
plate is 2 m long and 1.4 m wide and is placed in water which is moving with a velocity of
200 mm per second. Find the total drag force on the plate if u for water = .01 poise.

Solution. Given :

; 3
Velocity profile is % = E [l] — l (i)



Distance of x from leading edge, x = 1.5 m

Length of plate, L=2m
Width of plate, b=14m
Velocity of plate, U= 200 mm/s = 0.2 m/s
Viscosity of water, i = 0.01 poise = % =(0.001 Ns/m*
For the given velocity profile, thickness of boundary layer is given by equation (13.22) as
5 = 4.64 x
R,
Here R, = 2% =1000 x 2222 ~ 300000
1 0.001
4. 1.
2 20X 0127 m = 12.7 mm. Ans.
+/ 300000

’ . iy
Shear stress (T,) is b =0.323 — /R
edr stress (T,) 1s given by T, . ,

=0.323 x 0.001 :=-=: — :-c ~300000 = 0.0235 N/m®. Ans.

Drag Force (Fp) on one side of the plate is given b}f (13.23} as

Fp,=0.646 pU /PUL X b
M
0.2x20

= 0.646 x 0.001 x 0.2 x JIDDID — x 1.4
0.001

=.646 x 0.001 2 0.2 % /400000 % 1.4 = 0.1138 N
Total drag force = Drag force on both sides of the plate
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Boundary Layer Separation

< The increasing downstream pressure slows
down the wall flow and can make it go backward-
flow separation.

< dp/dx >0 adverse pressure gradient, flow
separation may occur.

< dp/dx < O favourable gradient, flow is very
resistant to separation.



BL Separad}ion Condition

dx >
—{>] ‘
> U—»

Edge of |——p
boundary p——»

layer [ 2L —=———"
— il -
\'/ Separation
B p =0 streamline
AN N RN\ SN RN L RN SN ANRR NN Y
A B C D

**Due to backflow close to the wall, a strong thickening of the
BL takes place and BL mass is transported away into the
outer flow.

At the point of separation, the streamlines leave the wall at a
certain angle.
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Separation Of BLAt A Circular Cylinder

N P

DE \/ gf

Separation of the boundary layer and
vortex formation a circular cylinder
(schematic). S=separation point



D to E, pressure drop, pressure is transformed into Kinetic
energy.

“»From E to F, kinetic energy Is transformed into pressure.

A fluid particle directly at the wall in the boundary layer isalso
acted upon by the same pressure distribution as in the outer
flow(inviscid).

< Due to the strong friction forces in the BL, a BL particle loses
so much of its Kinetic energy that is cannot manage to get over
the “pressure gradient” from E to F.
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< The following figure shows the time sequence of this
process:

» Reversed motion begun at the trailing edge.

» Boundary layer has been thickened, and start of the
reversed motion has moved forward considerably.

» And d. a large vortex formed from the backflow and then
soon separates from the body.



EXAMPLE OF FLOW SEPARATION

Y Y ¥ Y

Separation
streamline

{a) (b) (c)

s Velocity profiles in a boundary layer subjected to a pressurerise
— (@) start of pressure rise
— (b) after a small pressure rise _
— (c) after separation e ) /’"’Z}”",ﬁ

<+ Flow separation from a surface //‘—\_“’ i
— (a) smooth body

— (b) salient edge (b)

29



1. If (a_u) is negative ... the flow has separated.
dy ). _
y=1
fau *
2. If | — =0 ... the flow is on the verge of separation.
ua}’,ﬁ =
y=10
fau )
3. If 3_ is positive ... the flow will not separate or flow will remain attached with the surface.
% y;‘;:ﬂ.

Problem 13.18 For the following velocity profiles, determine whether the flow has separated or on
the verge of separation or will attach with the surface :

Lou_3 1)_1@3 oo [1]2_[1]'*

O [6 25/ @ 7=2% 5)°
2

(iii) %:-2(§]+[§)+

Solution. Given :
1-2[1)-1@3 o H_E[EJ_E(ET
U 2\8) 2\ T 248) 2146

1st Velocity Profile
Differentiating w.r.t. y, the above equation becomes,

@_Exl_gxg[zfxi
dy 28 2 S s
Ju 3V 3U (0 1 3U
At y=0,|— — | x===
v [ayLﬂ 2 z[a *3 2



2nd Velocity Profile

As [B‘_u] = (), the flow is on the verge of separation. Ans.
Y/,
y=>0

3rd Velocity Profile



Dimensionless numbers

e |tis almostimpossible to test models at physical sizes similar to the actual
full-scale prototypes - try testing A380 in a wind tunnel!

e Thankfully, research has shown that if similarities are achieved between
model and prototype, scaling of data is possible

e Three kinds of similarity
— Geometric similarity
— Dynamic similarity
— Kinematic similarity

e Realistically, not all three similarities can be achieved simultaneously.
Sometimes, even impossible
e Similarities are achieved by comparing dimensionless numbers

— Reynolds number
— Mach number etc



Dimensions

QUANTITY
Geometrical
Angle
Length

Area
Volume

Kinematic

Time

Velocity, linear
Acceleration, linear
Velocity, angular
Acceleration, angular
Volume rate of discharge

Dynamic

Mass

Force

Weight

Mass density
Work, energy
Power

Moment of a force
Viscosity, dynamic
Viscosity, kinematic

DEFINING EQUATION

Arc/Radius (a ratio)
(Including all linear

measurement)
Length x Length
Area x Length

Distance/Time

Linear velocity/ Time
Angle/Time

Angular velocity/Time
Volume/Time

Force/Acceleration
Mass x Acceleration
Force
Mass/Volume
Force x Distance
Work/Time
Force x Distance
Shear stress/ Velocity gradient
Dynamic viscosity/
Mass density

DIMENSIONS, MLT SYSTEM

[MC L° T
[L] «—— Basic dimension

[L7]
[L]

[T]€«<—— Basic dimension
[LT~]

[LT~]

[T]

[T]

[LT-]

[M] «—— Basic dimension
[MLT 2]

[MLT?]

[ML-]

[ML2T "

[ML2T -

[ML>T 2]

[ML-'T-]

LT



» 12.3 DIMENSIONAL HOMOGENEITY

Dimensional homogeneity means the dimensions of each terms in an equation on both sides are
equal. Thus if the dimensions of each term on both sides of an equation are the same the equation is
known as dimensionally homogeneous equation. The powers of fundamental dimensions (i.e., L, M, T)
on both sides of the equation will be identical for a dimensionally homogeneous equation. Such
equations are independent of the system of units.

Let us consider the equation, V= j2gH

Dimension of L.H.S. =V= % = LT

2
Dimension of R.H.S. = J2gH = 1’?_—'{:_,}{.{.:1‘%:% =LT"!
Dimension of L.H.S. = Dimension of R.H.S. = LT

Equation V= /2¢H is dimensionally homogeneous. So it can be used in any system of units.



The dimensional formula of Acceleration Due To Gravity is given by,
[Mﬂ L'I T-E]
Where,

« M=Mass
« L=Length

« T=Time

Derivation

Since, Force = Mass = Acceleration due to gravity

- Acceleration due to gravity (g) = Force x [Mass]" ..... (1)
= Dimensional formula of the mass=[MTL°T9] ... .. (2)
Also, the dimensions of Force =ML T ... . (3)

On substituting equation (2) and (3) in equation (1) we get,
Acceleration due to gravity = Force x [Mass]™
OorLg=MLITY=x M LOTO T = MmO L1 7.

Therefore, acceleration due to gravity is dimensionally represented as [M? L1 T-2].



» 12.4 METHODS OF DIMENSIONAL ANALYSIS

If the number of variable involved in a physical phenomenon are known, then the relation among
the variables can be determined by the following two methods :

1. Rayleigh’s method, and

2. Buckingham’s T-theorem.

Problem 12.2  The time period (1) of a pendufum depends upon the length (L) of the pendulum and
acceleration due to gravity (g). Derive an expression for the time period.
Snlutlnn Time period ¢ is a function nf (1) L and (ii) g
. t=KL".g" where K is a constant D)
Substltutlng the dimensions on both sides Tl KL® . (LT ]
Equating the powers of M, L and T on both sides, we have

Power of T, 1 ==2b b=_%
1 |
Power of L, O=a+#b a:-b:-(-—]:—
2 2

Substituting the values of @ and b in equation (i),

=KLIEvg_IE=KJE
£

The value of K is determined from experiments which is given as
K=2n

=21 JE. Ans.
g



Problem 12.3 Find an expression for the drag force on smooth sphere of diameter D, moving with
a uniform velocity V in a fluid of density p and dynamic viscosity (.
Solution. Drag force F is a function of
(i) Diameter, D (ii) Velocity, V (fii) Density, p
(iv) Viscocity, 1
- F=KD". V" .p°.u" (D)
where K is non-dimensional factor.
Substituting the dimensions on both sides,
MLT? =KL* (LT . (ML) . (ML™'T™")*
Equating the powers of M, L and T on both sides,

Power of M, l=c+d
Power of L, l=a+b-3c-d
Power of T, -2==-b-4d.

There are four unknowns (a, b, ¢, d) but equations are three. Hence it is not possible to find the
values of a, b, ¢ and d. But three of them can be expressed in terms of fourth variable which is most
important. Here viscosity is having a vital role and hence a, b, ¢ are expressed in terms of  which is the
power to VisCosity.

: c=1-d
b=2-d
a=1l-b+3c+d=1-24+d+3(1-d)+4d

=1 —-2+d+3 -3d+d=2—d
Substituting these values of a, & and ¢ in (1), we get
F=KDE—H+V2—d+pI—d+Md

o
— D22 D v o 0ty = KoD2v2 o
P P ey P (pVD

= KpD2VZ¢ [%] . Ans.
P



Problem 12.6 The resisting force R of a supersonic plane during flight can be considered as
dependent upon the length of the aircraft I, velocity V, air viscosity [, air density p and bulk modulus
of air K. Express the functional relationship between these variables and the resisting force.

Solution. The resisting force R depends upon

(1) density, [, (11) velocity, V,
(iii) viscosity, W, (iv) density, p,
Ay Bulk modnlus. K.
R=AI". V' p.p?. K N0

where A is the non-dimensional constant.
Substituting the dimensions on both sides of the equation (i),
MLT? = ALY (LT . (ML'T™Y . (ML . (MLT'T?)*
Equating the powers of M, L, T on both sides,

Power of M, l=c+d+e
Power of L, =a+b-c-3d-e
Power of T, —-2=-bh-c-2e.

There are five unknowns but equations are only three. Expressing the three unknowns in terms of
two unknowns (L and K).
Express the values of a, b and 4 in terms of ¢ and e.
Solving, d=1l-c—-e
b=2-c-2e
a=l-b+c+3d+e=1-2-c-2&)+c+3(l-c-e)+e
=1-2+c+2e+c+3-3c-3e+e=2-c.
Substituting these values in (i), we get
R=A !.-Z—c ) Vz—c—Ee . “{‘ ) pl—('—t’ K
AP VR pUl VW p . (VE . p? LK)

~ 2 2 ” [ K 4
'AWP[WL){PVEJ

()] o




Dimensionless numbers

L)

)

* Dimensionless numbers are obtained by
v Buckingham I1 theorem (simple but can be tedious)
v' Inspection of variables (not so simple but fast)

L)

>

Buckingham I1 theorem

L)

v “If an equation involving k number of variables is dimensionally
homogeneous, it can be reduced to a relationship among k-r
number of independent dimensionless products, where ris the
minimum number of reference dimensions required to describe
the variables.”

»* Involves rewriting the variables in their basic dimensions, M, L and
T and rearrange them such that they equate to a dimensionless
term

» Recall: M —mass, L—length, T—time

%* Dimensionless term => MPOLOTO



Dimensionless numbers

Procedures

1. List down all critical variables involved in the flow problem.

2. Express each of the variables in basic dimensions.

3. Determine the number of independent dimensionless products i.e.
I1
terms.

4. Select a number of repeating variables, such that the
number required is equal to the number of reference
dimensions.

5. Forma]] term by multiplying one of the non-repeating variables
by the product of the repeating variables, each raised to an
exponent that will make the combination dimensionless.

6. Repeat the previous step for all the remaining non-
repeating variables.

7. Ensure all the resulting | | terms are dimensionless.

8. Express the final form of the “I [ function” in terms of the [ ] terms.



Solution. Step 1. The resisting force R depends upon (i) I, (i) V, (iii) W, (iv) p and (v) K. Hence R
is a function of [, V, 1, p and K. Mathematically,
R=f(,V, 1, p,K) A1)
or it can be written as f; (R, [, V, L, p, K) = 0 (1)
Total number of variables, n = 6.
Number of fundamental dimensions, m = 3.
[m is obtained by writing dimensions of each variables as R = MLT >, V= LT, u= ML'T",
p=ML>, K=ML'T? Thus as fundamental dimensions in the problem are M, L, T and hence m = 3.]
Number of dimensionless n-terms=n-m=6-3 = 3.
Thus three m-terms say m;, T, and 7, are formed. Hence equation (i7) is written as
fi (), Ty, 73) = 0. .(iif)
Step 2. Each m term = m + 1 variables, where m is equal to 3 and also called repeating variables.
Out of six variables R, [, V, |1, p and K, three variables are to be selected as repeating variable. K is a
dependent variable and should not be selected as a repeating variable. Out of the five remaining



variables, one variable should have geometric property, the second variable should have flow property
and third one fluid property. These requirements are fulfilled by selecting [, V and p as repeating
variables. The repeating variables themselves should not form a dimensionless term and should have
themselves fundamental dimensions equal to m, i.e., 3 here. Dimensions of [, V and p are L, LT‘I,
ML™ and hence the three fundamental dimensions exist in /, V and p and they themselves do not form

dimensionless group.
Step 3. Each m-term is written as according to equation (12.4)

=1V . pT . R

m,=1" .V . p% .
M=% .Vh p® K
Step 4. Each w-term is solved by the principle of dimensional homogeneity. For the first T-term, we
have

(V)

W

n, = MOLOT® = [ (LT M. (ML) . MLT .
Equating the powers of M, L, T on both sides, we get

Power of M, O=c;+1 oo ==1
Power of L, O=a,+b;-3c, + 1,
a=—-b;+3,-1=2-3-1=-2
Power of T, 0=-58,-2 S o by=-12

Substituting the values of a;, b| and ¢, in equation (iv),
n,=0.V>.p"'.R
R R
Pvip  pl*V?

(V)

ar T.l'_‘l =



Similarly for the 2nd m-term, we get T, = M'L°T° = [ . (LT ") . (ML) . ML™'T™".
Equating the powers of M, L, T on both sides

Power of M, O=c,+ 1, S ==1
Power of L, O=a,+by,—3c,- 1,
ar,=—by+3c,+1=1-3+1=-1
Power of T, O0=-5b,-1, S by=—1
Substituting the values of a,, b, and ¢, in T, of (iv)
-1 S H
L= .V .p.Hu Vo'
3rd m-term
M= 1% .V p% K
M°LTY = 1% (LT3 . (MLY% . ML™'T?
Equating the powers of M, L, T on both sides, we have
Power of M, D=cy+ 1, S c3=-—1
Power of L, O=ay+b3-3c3-1, . a3=—=b3+3c;+1=2-3+1=0
Power of T, 0=-5by-2, Soby==2
Substituting the values of a;, b5 and c; in T, term
n, =00V p! .K:iz.
Vip

Step 5. Substituting the values of m,, m, and m, in equation (iii), we get
R LL K R n K
/i 272 * s a | =0 er 3 = 9 * 72
pl=Vv= IVp Vp pl-v IVp Vo

K
or R = pI*V? H . . Ans.
Ve |:I‘Vp v‘p]




Example

It is known that the fluid pressure drop per unit length of the pipe, 4p, has
to be dependent on the fluid velocity, U, pipe diameter, D, fluid density, p,
and fluid dynamic viscosity, 4. Base on this information, derive the
dimensionless terms. pependent  Independent

[Solution] vari%bles variables
We can write: Ap;=f(U,D, p, 1)

Express all variables in basic dimensions:

Apy= MLT2 D=L p=EML?  u=MLT U=ir™

Number of basic dimensions used — 3
Number of variables — 5 > Number of Il terms: 5-3 =2

Now, pick repeating variables to form the two I1 terms, bearing in mind

that:
— Do not use the dependent variable

— Select the variables with the simplest basic dimensions



Example

Using D, U and p as the repeating variables, combine them with the
dependent variable to get the two I1 terms:

1, = Ap,D°UP p©
I = ub?ue p’
Since both I] terms are dimen}ionées

M, = ﬁ/lrzr-z Ly T—ls)b@ﬁ)c =MOLO70

Equating the exponents on the left and right hand side:

1+c=0
—2+a+b-3c=0
—2-b=0

It can be worked outthata=1,b=-2and c=-1:

=11 = ApD
%




Example

Repeating for the second I1 term:

M, =Mt IL)d (T—l )eﬁ/lrf3 )f =MO°L°T°

1+f=0
—1+d+e-3f=0
—1-e=0

It can be worked outthatd=-1,e=-1and f=-1:

Note that reciprocal forms of the I1 terms as valid - dimensionless anyway
Equally valid to write:

——> Does this look
familiar to you?

U2 uD
=2 I, = 2=
App H



Problem 12.8 (a) State Buckingham’s m-theorem.
(b) The efficiency 1 of a fan depends on density p, dynamic viscosity [ of the fluid, angular velocity
w, diameter D of the rotor and the discharge (. Express 1] in terms of dimensionless parameters.
Solution. (a) Statement of Buckingham’s m-theorem is given in Article 12.4.2.
{b} (Given : 1 is a function of p, W, ®, D and ¢
. n=fip. 0,0, D, Q) or fiMmp. U oD Q)=0 (1)
Hence total number of variables, n = 6.
The value of m, i.e., number of fundamental dimensions for the problem is obtained by writing
dimensions of each variable. Dimensions of each variable are
N = Dimensionless,p = ML, u=ML T, o=T",D=Land 0 = L*T"
m=3
Number of n-terms =n-m=6-3=3



Equation (i) is written as f, (T;, T,, Ty) =0 ..(ii)
Each m-term contains m + 1 variables, where m 1s equal to three and is also repeating variable.
Choosing D, @ and p as repeating variables, we have

n, =D, ", pi.n
n,=D%. 0. p.p
n,=D%.w".p3.Q
First m-term m, =D, 0. pT.n

Substituting dimensions on both sides of m,,
MPLOT® = 1 (T Yo (ML . MPLTO
Equating the powers of M, L, T on both sides

Power of M, O0=¢c,+0, c; =0
Power of L, O=a, +0, a, =0
Power of T, 0=-b,+0, b,=0

Substituting the values of a, b, and ¢, in ;, we get
0,.0.0
m=0Dwp .Nn=7
[If a variable is dimensionless, it itself is a n-term. Here the variable 1 is a dimensionless and hence

N is a m-term. As it exists in first m-term and hence ®m; = 1. Then there is no need of equating the
powers. Directly the value can be obtained.]

Second m-term n,=D". 0. p2.
Substituting the dimensions on both sides

ML = 172 (1Yo ML M T
Equating the powers of M, L, T on both sides



Power of M, O0=¢cy, +1, cy=-1

Power of L, O=ay,-3c,-1, . ay=3c,+1=-3+1=-12
Power of T, 0=-b,-1, b,=-1
Substituting the values of a,, &, and ¢, in T,,
= D_E : {l}_l p! U= H
L) P D2ap

Third T-term n,=D%. ™. p3.Q
Substituting the dimensions on both sides

MPLOT® = 1% (T3 (ML . LT
Equating the powers of M, L and T on both sides

Power of M, 0= ¢y, c;=10
Power of L, O=ay-3c,+3, .-~ ay=3c;-3=-3
Power of T, 0=-by_,, by=-1
Substituting the values of a,, by and ¢, in T,,
=D 0. p. 0=-2
3 p- 0 Do

Substituting the values of ;, T, and 7, in equation (i7)

H Q p o Q
h [l], Dwp’ ﬂim] =ﬂmn=¢[ﬂlmp ,Dzm].fhns.




Dimensionless numbers

Formula

Type of force ratio

Applications

Reynolds number, Re

Froude number, Fr

Euler number, Eu

Mach number, Ma

Strouhal number, St

Weber number

Re = UL
y7i
Fr=——
gL
Eu __ b
pv?
Ma :g
a
St =—’l
U
pUL
We =

inertiaforce

viscous force

inertiaforce

gravitational force

pressure force
inertiaforce

inertiaforce

compressibility force

localinertiaforce

convectiveinertiaforce

inertiaforce
surface tensionforce

Almost all fluid
problems

Free surface flows

Flows with pressure
differentials

Compressible flows

Fluctuating or
oscillating flows

Flows with surface
tensions



Similarity (similitude)

e Three similarity types in fluid flow studies
— Geometric similarity
— Dynamic similarity

— Kinematic similarity

e Geometric similarity
— Model and prototype share the same geometry

— Length ratios on model same as length ratios on prototype
— Difficult when surface roughness is important (why?)

I,

N
N:

Model Prototype



Similarity (similitude)

Kinematic similarity

Similarity of motion, not geometry
Geometric similarity is implied + temporal similarity

Velocities and accelerations must be similar between model and
prototype

‘\) 40m/s

*— 20m/s (\
CA

[P ol 1< ol
I~ g | 1~ g

Im 2m

Kinematic similarity - flow patterns will be geometrically similar (just
bigger or smaller)

More difficult to achieve than geometric similarity but not impossible



Similarity (similitude)

Dynamic similarity
— Similarity of forces (i.e. lift, drag, gravitational etc) > very important

— Geometric similarity must be satisfied, kinematic similarity usually
satisfied

— Associated with dimensionless numbers (recall that they are ratios of
forces)

For dynamic similarity

Dimensionless number of model = Dimensionless number of prototype

For example, Re,, = Re St,, =St Ma,, = Ma,

P P

So, is model scaling and testing really this simple, just matching all the
important dimensionless numbers?



Similarity (similitude)

e Suppose we want to match Reynolds number for a subsonic aircraft model
with its real-world prototype during wind tunnel testing:

— /Omumlm — IOPUPIP
H ,Up

NI TAl
0 e t p)'

e Typically, |/l ratio is very large, and we

can assume p and u remain relatively
constant

1/32th scale F-16 model

u,, =2 supersonic regime !

e Sijtuation: prototype subsonic but model supersonic = shock waves
- not realistic at all

e Solution: variable density wind tunnel = increase p,,



Example
e Ashipisto be driven at 12 m/s in sea water. A model ship of 1/20th
scale is to be tested to determine the resistance encountered by the
actual ship. Determine the velocity at which the model ship should be

tested.
[Solution]

Similarity in free surface flows should be achieved - similar Froude
number

Um _ UP

Jal,  al,

S
IP

= (12) | =2.68m/s
20

> Thus, the model ship should be tested at 2.68 m/s water speed.



Example

A sphere experiences a drag force of 4.5 N when immersed in water moving
with a velocity of 1.5 m/s. A second sphere twice the diameter is tested in a
wind tunnel. If the two spheres are to have dynamic similarity, what should
the air velocity in the wind tunnel be? Additionally, what will the drag force
at this air velocity if the kinematic viscosity of air is 13 times that of water?
Assume air density to be 1.28 kg/m3.

[Solution]

For dynamic similarity, Reynolds numbers for both spheres should be
similar in both air and water flows:

UsDg _Uy Dy
Va Vw

U U xPw, Va =1.5x1x13=9.75m/s

a w Da VW 2

- Air velocity has to be 9.75 m/s for dynamic similarity.



Example

Next, drag coefficient should be the same for both spheres if the Reynolds
numbers are similar:

Note: A is the area facing the flow (i.e. A = 1 nD?* )
4

(Co)o= (Co)w

Uv: p?
F=F x&x—"X—a
© Y op U D,
2 2
_ 45128 x(9'75 x(z) — 0.976N
1000 \ 1.5 ) 1

> Drag force at 9.7 5m/s will be 0.976 N.



Pressure, lift and drag coefficients

* Pressure coefficient, C,, is very commonly used in aerodynamics and fluid
mechanics

e Instead of using actual pressure values, non-dimensionalized pressure
values are used > easier for scaling and comparisons

U, U Pressure coefficient is defined as:

[ P
. _‘_/\\ Cp:lp 2
2 o Oof_qoo

e Writing the Bernoulli’s equation for the above:

(v
p,+5p Ul =p+ p U =p-p, :ipwujkl_ -




Pressure, lift and drag coefficients

e Lift and drag coefficients are used even more frequently and are defined as

F F
CL=1 : chl b
“Ap U? “Ap U?

e Instead of plotting lift versus drag for an aerofoil/wing, C, is plotted
against C, (or viceversa)

e We will encounter these non-dimensionalized terms very frequently later
in the course



l. Tl.lE performance of the Bmgqgtlrﬁﬂ%lyé&ﬁe can be ﬂﬂSil}ffpl'ﬂdiCtEd, in

advance, from its model.

2. With the help of dimensional analysis, a relationship between the variables influencing a flow
problem in terms of dimensionless parameters is obtained. This relationship helps in conducting tests
on the model.

3. The merits of alternative designs can be predicted with the help of model testing. The most
economical and safe design may be, finally, adopted.

4. The tests performed on the models can be utilized for obtaining, in advance, useful information
about the performance of the prototypes only if a complete similarity exists between the model and the
prototype.



» 12.7 TYPES OF FORCES ACTING IN MOVING FLUID

For the fluid flow problems, the forces acting on a fluid mass may be any one, or a combination of
the several of the following forces :

1. Inertia force, F,. 2. Viscous force, F,.
3. Gravity force, F,. 4. Pressure force, F,.
5. Surface tension force, F.. 6. Elastic force, F,.

1. Imertia Force (F)). It is equal to the product of mass and acceleration of the flowing fluid and
acts in the direction opposite to the direction of acceleration. It is always existing in the fluid flow
problems.

2. Viscous Force (F ). It is equal to the product of shear stress (T) due to viscosity and surface
area of the flow. It is present in fluid flow problems where viscosity is having an important role to
play.

3. Gravity Force (F ). It is equal to the product of mass and acceleration due to gravity of the
flowing fluid. It is present in case of open surface flow.

4. Pressure Force (F p)- Itis equal to the product of pressure intensity and cross-sectional area of
the flowing fluid. It is present in case of pipe-flow.

5. Surface Tension Force (F ). It is equal to the product of surface tension and length of surface of
the flowing fluid.

6. Elastic FForce (F,). It is equal to the product of elastic stress and area of the flowing fluid.

For a flowing fluid, the above-mentioned forces may not always be present. And also the
forces, which are present in a fluid flow problem, are not of equal magnitude. There are always one
or two forces which dominate the other forces. These dominating forces govern the flow of fluid.



1. Geometric Similarity. The geometric similarity is said to exist between the model and the
prototype. The ratio of all corresponding linear dimension in the model and prototype are equal.
Let L, = Length of model, b,, = Breadth of model,
D, = Diameter of model, A,, = Area of model,
V,, = Volume of model,

and Lp, bp, Dp, Ap, ¥p = Corresponding values of the prototype.
For geometric similarity between model and prototype, we must have the relation,
L b D
Pt =-_"F -] ..(12.6)
L b D

mn m m

where L, is called the scale ratio.
For area’s ratio and volume’s ratio the relation should be as given below :
Ap  Lpxb,

AL xb,

i

i i i
and A2 [i) - (*’—PJ =(&J (12.8)
Vo L, b, D,

2. Kinematic Similarity. Kinematic similarity means the similarity of motion between model and
prototype. Thus kinematic similarity is said to exist between the model and the prototype if the ratios
of the velocity and acceleration at the corresponding points in the model and at the corresponding

=L xL=L" (12.7)



For kinematic similarity, we must have

Ve Vp,
= = vr
Vo Vi,
where V| is the velocity ratio.
_ ap ap
For acceleration, we must have — = —- =a,
(o a

mey iy

3. Dynamic Similarity. Dynamic similarity means the similarity of forces between the model and
prototype. Thus dynamic similarity is said to exist between the model and the prototype if the ratios of
the corresponding forces acting at the corresponding points are equal. Also the directions of the
corresponding forces at the corresponding points should be same.

Let (F;)p = Inertia force at a point in prototype,

(F,)p = Viscous force at the point in prototype,
(F)p = Gravity force at the point in prototype,
and (Fp (F ) (Fp)y, = Corresponding values of forces at the corresponding point in model.
Then for dynamic similarity, we have

(F), _(F), _(F),
(£), (&), (%)

Also the directions of the corresponding forces at the corresponding points in the model and proto-
type should be same.

... = F,, where F, is the force ratio.



12.9.1 Reynold’s Model Law. Reynold’s model law is the law in which models are based on
Reynold’s number. Models based on Reynold’s number includes :

(1) Pipe flow

(if) Resistance experienced by sub-marines, airplanes, fully immersed bodies etc.

As defined earlier that Reynold number is the ratio of inertia force and viscous force, and hence
fluid flow problems where viscous forces alone are predominent, the models are designed for dynamic
similarity on Reynolds law, which states that the Reynold number for the model must be equal to the
Reynold number for the prototype.

Let V., = Velocity of fluid in model,

p,, = Density of fluid in model,

L,, = Length or linear dimension of the model,

K, = Viscosity or fluid in model,
and Vp, pp, Lp and pp are the corresponding values of velocity, density, linear dimension and viscosity
of fluid in prototype. Then according to Reynold’s model law,

L
[R.], = [R.]pOr pm:mLm = ':’Fr‘“ P L (12.17)
[ P



12.9.2 Froude Model Law. Froude model law is the law in which the models are based on
Froude number which means for dynamic similarity between the model and prototype, the Froude
number for both of them should be equal. Froude model law is applicable when the gravity force is
only predominant force which controls the flow in addition to the force of inertia. Froude model law is
applied in the following fluid flow problems :

1. Free surface flows such as flow over spillways, weirs, sluices, channels etc.,

2. Flow of jet from an orifice or nozzle,

3. Where waves are likely to be formed on surface,

4. Where fluids of different densities flow over one another.

Let V., = Velocity of fluid in model,
L, = Linear dimension or length of model,

g,, = Acceleration due to gravity at a place where model is tested.
and Vp, Ly and g, are the corresponding values of the velocity, length and acceleration due to gravity
for the prototype. Then according to Froude model law,

1% V,

m

(F D modet = (F o) protorpe OF = ..(12.18)
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12.9.3 Euler’s Model Law. Euler’s model law is the law in which the models are designed on
Euler’s number which means for dynamic similarity between the model and prototype, the Euler
number for model and prototype should be equal. Euler’s model law is applicable when the pressure
forces are alone predominant in addition to the inertia force. According to this law :

{En}m{:-del = {Eu)pmlul}rpe (1 228]
If V.. = Velocity of fluid in model,
P, = Pressure of fluid in model,
P,, = Density of fluid in model,
and Vi, Pps pp = Corresponding values in prototype, then
Substituting these values in equation (12.28), we get
V V
_m ___F .(12.29)
‘qlpm ‘Illpm ‘\‘pf‘ '{pf’
If fluid is same in model and prototype, then equation (12.29) becomes as
V v
=L -(12.30)



12.9.4 Weber Model Law. Weber model law is the law in which models are based on Weber’s
number, which is the ratio of the square root of inertia force to surface tension force. Hence where
surface tension effects predominate in addition to inertia force, the dynamic similarity between the
model and prototype is obtained by equating the Weber number of the model and its prototype. Hence
according to this law :

(Wodmodet = (Wedprototype where W, is Weber number and = v
' Jo /pL
If V,, = Velocity of fluid in model,

o,, = Surface tensile force in model,

P,, = Density of fluid in model,
L, = Length of surface in model,

and Vp, Gp, pp, Lp = Corresponding values of fluid in prototype.
Then according to Weber law, we have
| V

M

= (12,31
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Weber model law is applied in following cases :

1. Capillary rise in narrow passages,

2. Capillary movement of water in soil,

3. Capillary waves in channels,

4. Flow over weirs for small heads.



12.9.5 Mach Model Law. Mach model law is the law in which models are designed on Mach
number, which is the ratio of the square root of inertia force to elastic force of a fluid. Hence where the
forces due to elastic compression predominate in addition to inertia force, the dynamic similarity
between the model and its prototype is obtained by equating the Mach number of the model and its
prototype. Hence according to this law :

(M) model — (M]'pmmrype

where M = Mach number = L
JEK I p
If V., = Velocity of fluid in model,

K, = Elastic stress for model,

P,, = Density of fluid in model,
and Vp, Kp and pp = Corresponding values for prototype. Then according to Mach law,

v Vv
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