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Introduction 

In August of 1904 Ludwig Prandtl,a 29-year old professor presented a  

remarkable paper on BOUNDARY LAYER at the 3rd International  

Mathematical Congress in Heidelberg. 

 
The condition of zero fluid velocity at the solid surface is referred to as  

„no slip‟ and the layer of fluid between the surface and the free stream  

fluid is termed BOUNDARY LAYER. 



Boundary Layer History 

1904 Prandtl 

Fluid Motion with Very Small Friction 

2-D boundary layer equations 

 
1908 Blasius 

The Boundary Layers in Fluids with Little Friction 

Solution for laminar, 0-pressure gradient flow 

 
1921 von Karman 

Integral form of boundary layer equations 



Laminar Flow 

 Each liquid particle has a definite path. 

 
The paths of individual particles do not  

cross each other. 

 
 All the molecules in the fluid move in 

the same direction and at the same speed. 

 
 It also called as stream line flow. 



Turbulent Flow 
 Each liquid particle do not have a 

definite path. 

 
The path of individual particle also cross  

each other. 

 
The molecules in the fluid move in  

different directions and at different  

speeds. 



Critical Velocity 

A velocity at which the flow changes from the laminar flow to  

turbulent flow. 

 
The critical velocity may be further classified into the following two  

types :1.Lower Critical Velocity 

2.Upper Critical Velocity 



Reynold‟s Number 

Re =Inertia forces/viscus forces 

=(ρv^2)/(µv/d) 

=ρvd/µ 

=vd/V (as ρ/µ=V) 

Re=Mean velocity of liquid × Diameter of pipe  

Kinematic velocity of liquid 

 Re < 2000 

 2000 < Re < 2800 

 2800 < Re 

; Laminar flow 

;Transition flow 

; Turbulent flow 



Boundary Layer Theory 

A thin layer of f luid acts in such a way ,as if it’s inner 
surface is fixed to the boundary of the body. 

 
 Velocity of f low at boundary layer is zero. 

 
The velocity of f low will go on increasing rapidly till at the  

extreme layer. 

 
The portion which is outside the boundary layer has a high  

value of Reynold’s Number, because of the high velocity of  
f low 





Thickness Of Boundary Layer 



The distance from surface of the body ,to a place where the velocity of  

flow is 0.99 times of the maximum velocity of flow ,is known as  

thickness of boundary layer. 

 
 It is usually denoted by δ(delta). 

 
RNX= Vx/v 

where, V=Velocity of fluid  

v=Kinematic velocity of fluid 

x= Distance b/w the leading edge of the plate and the  

section 





Boundary Layer Thickness, δ 

Boundary layer thickness is defined as that distance from the surface  

where the local velocity equals 99% of the free stream velocity. 

δ = y(u=0.99Us) 



Thickness Of Boundary Layer  

In A Laminar Flow 
It has been experimentally found, that the thickness of the  

boundary layer is zero at the leading edge A, and increases  
to the trailing edge , the f low is laminar. 

 
According to Pohlhausenin 

δlam = 5.835x/ Rnx 

 
According to Prandtl-Blassius 

δlam = 5x/ Rnx 



Thickness Of Boundary Layer  

In A Turbulent Flow 
As the boundary layer continuous further downstream, it  

expands and the transition flow changes into turbulent flow and  

the transition boundary layer changes into turbulent boundary  

layer, which continuous over the remaining length of the plate. 

 
According to Prandtl-Blassious, 

δtur = 0.377x/(RNx)^1/5 



Displacement Thickness, δ* 

The displacement thickness for the boundary layer is defined as the  

distance the surface would have to move in the y-direction to reduce the  

flow passing by a volume equivalent to the real effect of the boundary 

 0 
layer. δ*= 

δ 
(1 − 𝑢/𝑈𝑠)dy 



Momentum Thickness, θ 

𝛿 

Momentum thickness is the distance that, when multiplied by the  

square of the free stream velocity, equals the integral of the  

momentum defect. Alternatively, the total loss of momentum flux  

is equivalent to the removal of momentum through a distance θ. It  

is a theoretical length scale to quantify the effects of fluid  

viscosity near a physical boundary. 

θ = 0 𝑢/𝑈𝑠(1 − 𝑢/𝑈𝑠)dy 



































Pressure Gradients In  

Boundary Layer Flow 



Applications Of Boundary Layer Theory 

Aerodynamics (Airplanes, Rockets, Projectiles) 

 
Hydrodynamics (Ships, Submarines, Torpedoes) 

 
Transportation (Automobiles, Trucks, Cycles) 

 
Wind Engineering (Buildings, Bridges, Water Towers) 

 
Ocean Engineering (Buoys, breakwaters, Cables). 



















Boundary Layer Separation 
The increasing downstream pressure slows  

down the wall flow and can make it go backward-  
flow separation. 

 
dp/dx >0 adverse pressure gradient, flow  

separation may occur. 

 
dp/dx < 0 favourable gradient, flow is very  

resistant to separation. 



BL Separation Condition 

Due to backflow close to the wall, a strong thickening of the  

BL takes place and BL mass is transported away into the  

outer flow. 

At the point of separation, the streamlines leave the wall at a  
certain angle. 





Separation Of BL At A Circular Cylinder 

Separation of the boundary layer and  

vortex formation a circular cylinder  

(schematic). S=separation point 



D to E, pressure drop, pressure is transformed into kinetic  

energy. 

 
From E to F, kinetic energy is transformed into pressure. 

 
A fluid particle directly at the wall in the boundary layer is also  

acted upon by the same pressure distribution as in the outer  

flow(inviscid). 

 
Due to the strong friction forces in the BL, a BL particle loses  

so much of its kinetic energy that is cannot manage to get over  

the “pressure gradient” from E to F. 



The following figure shows the time sequence of this  

process: 

 
Reversed motion begun at the trailing edge. 

 
Boundary layer has been thickened, and start of the 

reversed motion has moved forward considerably. 

 
And d. a large vortex formed from the backflow and then  

soon separates from the body. 
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EXAMPLE OF FLOW SEPARATION 

 Velocity profiles in a boundary layer subjected to a pressure rise 

– (a) start of pressure rise 

– (b) after a small pressure rise 

– (c) after separation 

 Flow separation from a surface 

– (a) smooth body 

– (b) salient edge 







Dimensionless numbers 
• It is almost impossible to test models at physical sizes similar to the actual  

full-scale prototypes  try testing A380 in a wind tunnel! 

• Thankfully, research has shown that if similarities are achieved between 
model and prototype, scaling of data is possible 

• Three kinds of similarity 

– Geometric similarity 

– Dynamic similarity 

– Kinematic similarity 

• Realistically, not all three similarities can be achieved simultaneously.  
Sometimes, even impossible 

• Similarities are achieved by comparing dimensionless numbers 

– Reynolds number 

– Mach number etc 



Dimensions 

Basic dimension 

Basic dimension 

Basic dimension 













Dimensionless numbers 
 Dimensionless numbers are obtained by 

 Buckingham  theorem (simple but can be tedious) 

 Inspection of variables (not so simple but fast) 

 Buckingham  theorem 

“If an equation involving k number of variables is dimensionally  
homogeneous, it can be reduced to a relationship among k-r 
number of  independent dimensionless products, where r is the 
minimum number of  reference dimensions required to describe 
the variables.” 

 Involves rewriting the variables in their basic dimensions, M, L and 
T and  rearrange them such that they equate to a dimensionless 
term 

 Recall: M – mass, L – length, T – time 

 Dimensionless term  M0L0T0 



Dimensionless numbers 
• Procedures 

1. List down all critical variables involved in the flow problem. 

2. Express each of the variables in basic dimensions. 

3. Determine the number of independent dimensionless products i.e. 
 

terms. 

4. Select a number of repeating variables, such that the 
number  required is equal to the number of reference 
dimensions. 

5. Form a  term by multiplying one of the non-repeating variables 
by  the product of the repeating variables, each raised to an 
exponent  that will make the combination dimensionless. 

6. Repeat the previous step for all the remaining non-
repeating  variables. 

7. Ensure all the resulting  terms are dimensionless. 

8. Express the final form of the “ function” in terms of the  terms. 









Example 
• It is known that the fluid pressure drop per unit length of the pipe, pl, has  

to be dependent on the fluid velocity, U, pipe diameter, D, fluid density, ,  
and fluid dynamic viscosity, . Base on this information, derive the 
dimensionless terms.  

[Solution] 

We can write: 

Express all variables in basic dimensions: 

Number of basic dimensions used – 3 

Number of variables – 5  Number of  terms: 5 – 3 = 2 

Now, pick repeating variables to form the two  terms, bearing in mind  
that: 

– Do not use the dependent variable 

– Select the variables with the simplest basic dimensions 

pl  f U,D,  ,   

pl  ML2T 2 D  L   ML3   ML1T 1 U  LT 1 

Independent 
variables 

Dependent 
variables 



Example 

1 
U2 

Using D, U and  as the repeating variables, combine them with the  
dependent variable to get the two  terms: 

1  l D
aUb  c 

   DdUe  f 
2 

Since both  terms are dimensionless: 
1   ML2T 2 La LT 1  ML3   M 0L0T 0 

b c 
 

 

Equating the exponents on the left and right hand side: 

1 + c = 0 

– 2 + a + b – 3c = 0 

– 2 – b = 0 

It can be worked out that a = 1, b = -2 and c = -1: 

   
lD 



Example 
Repeating for the second  term: 

 2   ML1T 1 Ld LT 1  ML3   M 0L0T 0 

e f 
 
 

1 + f = 0 

– 1 + d + e – 3f = 0 

– 1 – e = 0 

It can be worked out that d = -1, e = -1 and f = -1: 

Note that reciprocal forms of the  terms as valid  dimensionless anyway  

Equally valid to write: 

UD 
  

     
2 

l 

1  
 D  

U2 

  
UD 

2 Does this look  
familiar to you? 









Dimensionless numbers 

Name Formula Type of force ratio Applications 

 

Reynolds number, Re Re  
UL 

 

 inertiaforce  

viscous force 
Almost all fluid  

problems 

 

Froude number, Fr Fr 
 U  

gL 

  inertiaforce   

gravitational force 

 

Free surface flows 

 

Euler number, Eu Eu 
   p  

V 2 

pressure force  

inertiaforce 

Flows with pressure  
differentials 

 

Mach number, Ma Ma  
U 

a 

  inertiaforce   

compressibility force 

 

Compressible flows 

 

Strouhal number, St St 
 fL 

U 

  local inertiaforce   

convective inertiaforce 
Fluctuating or  

oscillating flows 

 

Weber number 
U2L 

We  
 

  inertiaforce   

surface tensionforce 
Flows with surface 

tensions 



Similarity (similitude) 
• Three similarity types in fluid flow studies 

– Geometric similarity 

– Dynamic similarity 

– Kinematic similarity 

• Geometric similarity 

– Model and prototype share the same geometry 

– Length ratios on model same as length ratios on prototype 

– Difficult when surface roughness is important (why?) 

Model Prototype 



Similarity (similitude) 
• Kinematic similarity 

– Similarity of motion, not geometry 

– Geometric similarity is implied + temporal similarity 

– Velocities and accelerations must be similar between model and 
prototype 

 
40m/s 

20m/s 

 
1m 2m 

 

– Kinematic similarity  flow patterns will be geometrically similar (just  
bigger or smaller) 

– More difficult to achieve than geometric similarity but not impossible 



Similarity (similitude) 
• Dynamic similarity 

– Similarity of forces (i.e. lift, drag, gravitational etc)  very important 

– Geometric similarity must be satisfied, kinematic similarity usually 
satisfied 

– Associated with dimensionless numbers (recall that they are ratios of  
forces) 

• For dynamic similarity 

Dimensionless number of model = Dimensionless number of prototype 

• For example, 

• So, is model scaling and testing really this simple, just matching all the 
important dimensionless numbers? 

Rem = Rep Stm = Stp Mam = Map 



Similarity (similitude) 

• Typically, lp/lm ratio is very large, and we 

can assume  and  remain relatively 
constant 

um  supersonic regime ! 
• Situation: prototype subsonic but model supersonic  shock waves 
 not realistic at all 

• Solution: variable density wind tunnel  increase m 

• Suppose we want to match Reynolds number for a subsonic aircraft model  
with its real-world prototype during wind tunnel testing: 

   
mumlm     

puplp 

  
m p 

 
 m  

 m   m   p  

 um   up   
   l  

 lp  p   

1/32th scale F-16 model 



Example 
• A ship is to be driven at 12 m/s in sea water. A model ship of 1/20th 

scale is  to be tested to determine the resistance encountered by the 
actual ship.  Determine the velocity at which the model ship should be 
tested. 

[Solution] 

Similarity in free surface flows should be achieved  similar Froude 
number 

glm glp 

Up Um 
 

p 

p m l 

lm  U  U 

 12  1 
 2.68 m/s 

20 
 
 Thus, the model ship should be tested at 2.68 m/s water speed. 



Example 
• A sphere experiences a drag force of 4.5 N when immersed in water moving  

with a velocity of 1.5 m/s. A second sphere twice the diameter is tested in  a 
wind tunnel. If the two spheres are to have dynamic similarity, what  should 
the air velocity in the wind tunnel be? Additionally, what will the  drag force 
at this air velocity if the kinematic viscosity of air is 13 times that  of water? 
Assume air density to be 1.28 kg/m3. 

[Solution] 

For dynamic similarity, Reynolds numbers for both spheres should be  
similar in both air and water flows: 

UaDa   
Uw Dw  

 a  w  

 
 1.5 

1 
13  9.75m/s 

2 a w 
w a 

D  
U  U  

Dw  
 a 

 Air velocity has to be 9.75 m/s for dynamic similarity. 



Example 
Next, drag coefficient should be the same for both spheres if the Reynolds  
numbers are similar: 

U A 

C D 
2 

2 

1 
 


 F  

Note: A is the area facing the flow (i.e. A  
1 

D2 ) 
4 

CD a  CD w 

w w w 

a w U2 D2 

U2 D2 

 a  a  a  F  F 
 

 

2 2 

 1  
    

1000  1.5  
 4.5

 1.28 
 9.75   2   0.976 N 

 Drag force at 9.7 5m/s will be 0.976 N. 



Pressure, lift and drag coefficients 
• Pressure coefficient, Cp, is very commonly used in aerodynamics and fluid  

mechanics 

• Instead of using actual pressure values, non-dimensionalized pressure 
values are used  easier for scaling and comparisons 

• Writing the Bernoulli’s equation for the above: 

2 

 

U 

  p  p  
C  p 1 

 
2 

U 

p 

U Pressure coefficient is defined as: 
p 

  
 

   
        2 

2 

2 

2 1 

2 

2 1 

2 

1 

U 

U2  
U 1  U   p  p   U  p   p   

2 1 

2    
U2 

U2 
p  p 

C    1  p 
 U 

q 



Pressure, lift and drag coefficients 
• Lift and drag coefficients are used even more frequently and are defined as 

• Instead of plotting lift versus drag for an aerofoil/wing, CL is plotted 
against  CD (or vice versa) 

• We will encounter these non-dimensionalized terms very frequently later 
in  the course 

2 1 

2   

C  D 

A U 2 1 

2 
  

C  
FL FD 

L 

A U 



Model Analysis 


















